Search results for "Natural Fibers"

showing 10 items of 23 documents

Natural Compounds as Sustainable Additives for Biopolymers

2020

In the last few decades, the interest towards natural compounds, coming from a natural source and biodegradable, for biopolymers is always increasing because of a public request for the formulation of safe, eco-friendly, and sustainable materials. The main classes of natural compounds for biopolymers are: (i) naturally occurring fillers (nFil), such as nano-/micro- sized layered alumino-silicate: halloysite, bentonite, montmorillonite, hydroxyapatite, calcium carbonate, etc.; (ii) naturally occurring fibers (nFib), such as wood and vegetable fibers; (iii) naturally occurring antioxidant molecules (nAO), such as phenols, polyphenols, vitamins, and carotenoids. However, in this short review, …

AntioxidantPolymers and Plasticsmedicine.medical_treatmentbiopolymersReviewengineering.materialHalloysiteNatural (archaeology)lcsh:QD241-441chemistry.chemical_compoundnatural fiberslcsh:Organic chemistrybiopolymermedicineOrganic chemistryPhenolsnatural antioxidantsnatural fillerSettore CHIM/06 - Chimica OrganicaGeneral Chemistrynatural fibernatural fillersSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialiMontmorilloniteCalcium carbonatechemistryPolyphenolBentoniteengineeringPolymers
researchProduct

Effect of Sheep Wool Fibers on Thermal Insulation and Mechanical Properties of Cement-Based Composites

2019

The use of sheep wool as a filler of cement in order to produce mortar or plaster involves several advantages for environment and energy. Moreover, it is considered as a waste and, therefore, its use is characterized by low cost. The aim of this paper is to evaluate the influence of wool fibers on thermal conductivity and mechanical properties of cement. The samples were prepared using wool fibers, obtained from a breed of Sicilian sheep, with three different lengths (i.e., 1, 6, and 20 mm). Furthermore, in order to evaluate the influence of fiber content, the samples were prepared by varying the fiber weight fraction. The thermal conductivity of the samples was analyzed by using a heat flo…

CementFiller (packaging)Materials sciencebusiness.industrytheoretical modelWoolMaterials Science (miscellaneous)02 engineering and technology010501 environmental sciences021001 nanoscience & nanotechnology01 natural sciencesCement mortarnatural fiberSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialiThermal insulationmechanical propertiethermal conductivityMortarComposite material0210 nano-technologybusinesscement mortar; mechanical properties; natural fibers; theoretical model; thermal conductivity; WoolSheep wool0105 earth and related environmental sciencesCement based composites
researchProduct

Assessment of Arundo donax Fibers for Oil Spill Recovery Applications

2019

In the last years, natural fibers are increasingly investigated as an oil recovery system in order to overcome the oil spillage phenomena, thus preserving environment and aquatic life. In particular, lignocellulose-based fibers have recently been employed with promising results. In such a context, the aim of this paper is to assess the oil sorption capability of natural fibers extracted from the stem of the giant reed Arundo donax L., a perennial rhizomatous grass belonging to the Poaceae family that grows naturally all around the world thanks to its ability to tolerate different climatic conditions. Sorption tests in several pollutants and water as a reference were carried out. The fibers …

Context (language use)02 engineering and technology<i>Arundo donax</i>010501 environmental sciences01 natural sciencesArundo donaxBiomaterialsAdsorptionnatural fiberslcsh:TP890-933lcsh:TP200-248morphologyPoaceaelcsh:QH301-705.50105 earth and related environmental sciencesCivil and Structural EngineeringPollutantoil recoverybiologyAquatic ecosystemArundo donaxSorptionlcsh:Chemicals: Manufacture use etc.021001 nanoscience & nanotechnologyPulp and paper industrybiology.organism_classificationNatural fibernatural fibers; Arundo donax; oil recovery; sorption capacity; morphologylcsh:QC1-999sorption capacitylcsh:Biology (General)Mechanics of MaterialsOil spillCeramics and CompositesEnvironmental sciencelcsh:Textile bleaching dyeing printing etc.0210 nano-technologylcsh:PhysicsFibers
researchProduct

Influence of the anisotropy of sisal fibers on the mechanical properties of high performance unidirectional biocomposite lamina and micromechanical m…

2021

Abstract High performance biocomposites reinforced by sisal fibers, are between the most promising materials that could be used in various fields, from automotive to civil constructions, thanks to their good mechanical performance, as well as to the low cost and the great availability of the fiber. Nevertheless, at present their practical use is prevented by the limited knowledge of their mechanical performance. The results of the present study have shown that the intimate fibrillar structure of the sisal fiber is associated with a high anisotropy involving not only the elastic parameters, but also the damage processes with typical fiber splitting phenomena, that influence noticeably the bi…

LaminaMaterials scienceBiocomposite Natural fibers Anisotropy Micro-mechanics02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesShear (sheet metal)Settore ING-IND/14 - Progettazione Meccanica E Costruzione Di MacchineMechanics of MaterialsUltimate tensile strengthCeramics and CompositesFiberBiocompositeComposite material0210 nano-technologyAnisotropycomputerSisal fiberSISALcomputer.programming_languageComposites Part A: Applied Science and Manufacturing
researchProduct

Experimental design of the bearing performances of flax fiber reinforced epoxy composites by a failure map

2018

Abstract This paper represents the first effort aimed to the investigation of the pin/hole contact stress and failure mechanisms of epoxy composites reinforced with woven flax fabrics, underwent to tensile bearing tests. In particular, the maximum loads and failure modes are evaluated at varying the laminate geometrical configuration. In order to optimize the use of polymer composites reinforced with flax fibers in structural applications, an experimental failure map, identifying main failure modes of mechanically fastened joints, is obtained as function of hole diameter, distance of the hole from the free edge of the laminate and laminate width. Moreover, a theoretical approach based on th…

Materials science02 engineering and technologyMechanical jointFlax compositeIndustrial and Manufacturing Engineeringlaw.inventionFlax fiber0203 mechanical engineeringlawUltimate tensile strengthComposite materialBearing (mechanical)Mechanical EngineeringFailure modeEpoxyComposite laminates021001 nanoscience & nanotechnologyBearing; Failure modes; Flax composites; Mechanical joints; Natural fibers; Ceramics and Composites; Mechanics of Materials; Mechanical Engineering; Industrial and Manufacturing EngineeringSettore ING-IND/22 - Scienza E Tecnologia Dei Materiali020303 mechanical engineering & transportsContact mechanicsMechanics of Materialsvisual_artMechanical jointBearingCeramics and CompositesFracture (geology)visual_art.visual_art_mediumNatural fibers0210 nano-technologyComposites Part B: Engineering
researchProduct

Low-velocity impact behaviour of green epoxy biocomposite laminates reinforced by sisal fibers

2020

Abstract Due to its good mechanical characteristics, low cost and high availability in the current market, sisal fiber is one of the most used for the manufacturing of biocomposites in various industrial fields (automotive, marine, civil construction etc.). The particular sub-fibrillar structure of the sisal fiber (similar to aramid fibers) and the corresponding anisotropic behavior detected by recent research activities, suggest that such biocomposites should exhibit also high impact strength, in such a way to permit their advantageously use also for the manufacturing of crashworthy components (bumpers, helmets, protection systems etc.), that are at the same time also eco-friendly, lightwe…

Materials scienceBiocomposites Natural fibers Sisal Impact strength Computed tomography02 engineering and technologyImpact testImpact strengthSisalSettore ING-IND/14 - Progettazione Meccanica E Costruzione Di Macchine0203 mechanical engineeringFiberComposite materialComputed tomographySISALCivil and Structural Engineeringcomputer.programming_languageBiocompositesBiocomposites Computed tomography Impact strength Natural fibers SisalIzod impact strength testEpoxy021001 nanoscience & nanotechnologyAramid020303 mechanical engineering & transportsvisual_artVolume fractionCeramics and Compositesvisual_art.visual_art_mediumNatural fibersBiocomposite0210 nano-technologycomputerComposite Structures
researchProduct

Induced Modification of Flexural Toughness of Natural Hydraulic Lime Based Mortars by Addition of Giant Reed Fibers

2020

Abstract Nowadays, there is a growing need to reduce the environmental impact generated by the use of inorganic materials for building applications. The aim of this work is to investigate the bio-lime based mortar flexural toughness improvement due to the addition of common reed fibers (Arundo donax L.) in order to evaluate their possible application as ductile eco-compatible prefabricated bricks or laying and joint mortars for masonry. Different sets of specimens were tested by varying the fiber weight content and the fiber length. Moreover, chemical treatments with Linseed Oil and Polyethylene glycol (PEG) were performed to improve the physical and mechanical properties of the fibers as w…

Materials scienceChemical treatmentsArundo donax L.Materials Science (miscellaneous)0211 other engineering and technologies020101 civil engineering02 engineering and technologyBendingPercentage of fibersengineering.material0201 civil engineeringFlexural strength021105 building & constructionlcsh:TA401-492FiberComposite materialJoint (geology)Tensile testingbusiness.industryHydraulic limeFiber lengthMasonrySettore ING-IND/22 - Scienza E Tecnologia Dei MaterialiengineeringFlexural toughnesslcsh:Materials of engineering and construction. Mechanics of materialsMortarNatural fibersbusinessCase Studies in Construction Materials
researchProduct

Experimental assessment of the improved properties during aging of flax/glass hybrid composite laminates for marine applications

2018

The investigation for natural fibers composites in terms of performance, durability, and environmental impact for structural applications in marine environments is a relevant challenge in scientific and industrial field. On this context, the aim of this work is to assess the durability and mechanical stability in severe environment of epoxy/glass–flax hybrid composites. For the sake of comparison, also full flax and glass epoxy composites were investigated. All samples were exposed to salt–fog environmental conditions up to 60 aging days. Wettability behavior during time was compared with water uptake evolution to assess water sensitivity of hybrid composite configurations. Moreover, quasi-…

Materials sciencePolymers and PlasticsGlass fiber02 engineering and technologyGeneral ChemistryComposite laminates010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesDurability0104 chemical sciencesSurfaces Coatings and Filmsnatural fibershybrid compositeMaterials Chemistrydurabilitymechanical propertieComposite material0210 nano-technologydurability; glass fibers; hybrid composites; mechanical properties; natural fibers; Chemistry (all); Surfaces Coatings and Films; Polymers and Plastics; Materials Chemistry2506 Metals and Alloysglass fiberJournal of Applied Polymer Science
researchProduct

An Innovative Treatment Based on Sodium Citrate for Improving the Mechanical Performances of Flax Fiber Reinforced Composites

2021

The goal of this paper is to evaluate the effectiveness of a cost-effective and eco-friendly treatment based on the use of sodium citrate (Na3C6H5O7) on the mechanical properties of flax fiber reinforced composites. To this scope, flax fibers were soaked in mildly alkaline solutions of the sodium salt at different weight concentration (i.e., 5%, 10% and 20%) for 120 h at 25 °C. The modifications on fibers surface induced by the proposed treatment were evaluated through Fourier transform infrared analysis (FTIR), whereas scanning electron microscope (SEM) and helium pycnometer were used to obtain useful information about composites morphology. The effect of the concentration of the treating …

Materials sciencePolymers and PlasticsScanning electron microscopeflaxchemical treatmentCharpy impact test02 engineering and technologymechanical properties010402 general chemistrysodium citrate01 natural sciencesArticlefiber–matrix adhesionlcsh:QD241-441chemistry.chemical_compoundnatural fiberslcsh:Organic chemistryFlexural strengthUltimate tensile strengthSodium citrateComposite materialFourier transform infrared spectroscopyGeneral ChemistryDynamic mechanical analysis021001 nanoscience & nanotechnology0104 chemical sciencesChemical treatment Fiber-matrix adhesion Flax Mechanical properties Natural fibers Sodium citrateSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialichemistryVoid (composites)0210 nano-technologyPolymers
researchProduct

Salt-fog spray aging of jute-basalt reinforced hybrid structures. Flexural and low velocity impact response

2017

Abstract In this work, a study on the aging resistance of jute and jute-basalt interply hybrid laminates exposed to salt-fog is presented with the aim to investigate the possibility to enhance the durability of natural fiber reinforced composites for marine application by a ply-substitution approach. In particular, jute and basalt/jute reinforced composite plates were manufactured by vacuum assisted resin infusion in two different staking sequences (i.e., intercalated and sandwich-like basalt-jute) and aged under salt fog conditions. The effects of the accelerated aging at increasing times on the mechanical response of laminates were assessed in both quasi static (three point bending) and d…

Materials scienceThree point flexural testComposite numberHybrid compositeindustrial and manufacturing engineering02 engineering and technologymechanical properties010402 general chemistry01 natural sciencesnatural fibersFlexural strengththermosettig resinceramics and compositesceramic fibersComposite materialNatural fiberceramic fibers; hybrid composites; mechanical properties; natural fibers; thermosettig resin; ceramics and composites; mechanics of materials; mechanical engineering; industrial and manufacturing engineeringFlexural modulusCeramic fiber021001 nanoscience & nanotechnologyNatural fiberAccelerated agingDurability0104 chemical sciencesSettore ING-IND/22 - Scienza E Tecnologia Dei Materialimechanics of materialsmechanical engineering0210 nano-technologyhybrid compositesMechanical propertieQuasistatic process
researchProduct